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Abstract

A unified approach to the theory of correlations in a plasma !
is presented, based on the BBKGY hierarchy. The theory is applied
to a one-component plasma with the Coulomb interaction modified
to include effects of the background. Closed integro-differential
equations in space and time are obtained for the two-particle

correlation function in both the strong and weak coupling limits,

[

In the weak-coupling domain, X << 1, the time-independent analysis

[ TN

returns the well-known linearized Debye-Huckle result, where v is

the plasma parameter. In the strong-coupling domain with X : 1,
the resulting two-particle "total' correlation function exhibits
decaying oscillatory behavior for particle separation of the crder

of the effective interparticle range. .
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I. Introduction

Various efforts have undertaken to describe one-component plasmas
in two extreme limits. These are the weakly (y << 1) and strongly

(v 3 1) coupled domains. In the former limit many such efforts

have led to the linearized Debye-Hiickle result,using kinetic li2’3,

statistical mechanic314’5’6, and numerical7’8’9 formulations.

In the strong-coupling domain, studies have centered around such

0,11

1 . .
nroblems as plasma turbulence and electron correlations at metallie

R ) . , . . .
densities™ ., Each apnroach has applied its own approximation of the

correlation functions to the BBKGY hierarchy in order to obtain the

s . - . 1 . . .
dielectric response zunctloﬁ#a. The function thus acgquired is then em-

ployed in conjunction with the fluctuation-dissipation theorem to

obtain a self-consistent solution for the static form factor or, equiv-

7,

; . . 1]
alently, the pair correlation function~“,
A more recent study and review of calculations concerning the

total internal energy of a one-component plasma in the strong-coupling

1.15

limit is presented by Gould, et a Comprehensive expositions on

the state of the art of this subject have been given by Kalman and

16 14

Carini; Baus and Hansen,8 and Ichimaru.

The relevance oI strongly-coupled plasmas to natural phenomena

l“

i3 illustrated in Fig. 1. We note that, in particular, the strong-
counling limit plays an important role in the description of x-rav
olasmas, laser fusion devices, and in the interiors of certain super-

dense stars.

In the numerical work of Brush, Sanhiin and Teller ', the »air
correlation Zfuncction is evaluated cver a lzarge range ¢ -ralues of

voLhe

the plasma paramter, v. Thev £ind zhat with increasin

U]
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correlation function passes from a Debye-Hiickle form to a decaving,
oscillatory form. This numerical study further demonstrates that
the effect of the background charge is to alter the effective inter-

narticle interaction away from the bare Coulomb force.

In the present study a unified formulation for the theory of
correlations in a one-component plasma is introduced which is wvalid
for weakly and strongly-coupled plasmas. The theory is based on the
BBKGY hierarchy and a sequential ordering of the correlation functicns.
This ordering is specified in terms of the plasma parameter v. An
c-expansion imbedded within the ordering scheme permits an interactive
technique of solution and renders the analysis self-consistent.

To better incorporate the role of the neutralizing background,
the effective interparticle force is expanded about the bare Coulomb
interaction. This inclusion is motivated by results of previous

7,8

numerical studies. In both the weak and strongly coupled

domains, closed space-time integro-differential equations are

cbtained for the two-particle correlation functioms.
In the weak-coupling domain a time-independent analysis returns
the well-kncwn linearized Debye-Hiickle correlaticn function.l'g
In the strongly-coupled domain a second-order differential

equation is obtained for the correlation function. The solution :o

this equation exhibits a decaying oscillatcry structure Zor particle
separations in excess of the order of the effective two-narticle

interaction range. These purely analytic results are in very good

. N . /
agreement with previous numerical work.

The essential components of this analysis are rzlated as shown

ig. 2.

-
)

in the flow chars given in

B . ]

iRl N .




II. Analysis

A. Basic Formulation

We consider an aggregate of charges Ze in a uniform neutralizi
background. The sth equation of the BBKGY hierarchy, hereafter call

BYS, is given by (see, for example, Liboffl7)

2+ I opet 4+ 3 I°5G.. e (s2m - 2] F
[3t i=lgl Xy 1015@ ~1i] <32i ng)] s
r (1) |
o 72 d(s+l) G
= - I = . s+ . I
Ivyo 1 395 j 2i,s+1%s+1
18

Parameters are nondimensionalized as follows™ ", where barred variabl*

are dimensional.

TS T )

$ 2.2
= o Z%e
G.. = — G,.,, o = = (2)
~1] ry, ~ij o Ty
t=——_t

L
In addition,

p. =0 C m C2 = kT
“o - ’ “B

The parameters ag and i in (1) which emerge as a consecuence

of nondimensionalization are,

<}
~
(V8
~r

1
2 0= % Jk_T , = = 47711’3 , n =
B Yo o

Here :o and r, are, resvectivelv, the strength ané range of the in:erJ

.

action dotential. For the case that r_ = \

o ar the Debve distance, =h

coeificients 3 and v are written without subscriots.
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_ 3s,,s
Fg = (mO)~°v Es
probability distribution.

1

fFS dld2...ds

force on the ith

As noted in the introduction,
calculations7 that the net effect

alter the effective interparticle

n
rection term in the series

= F (1) F(2) +

£ F1(L) Cy(2,3) + Fi(2) Cp(3,1) + F(3) Call,

+ C3(l,2,3)

The nondimensional distribution is then given by

where V is the volume of the system and fs

The functicn

where ohase-volume elements are likewise dimensionless.

ion due to the jt

. . . . . 20
! The correlatiocn functions are defined through the MMaver exvansions

19

(&)

is the s-vparticle joint

»

-~

s has the normalization,

(5)

The effective
h . . =
“ ion is G...
it has been found in Monte Carlo

of the background charge is to

force away from a simple Coulomb

form. Accordingly we write
5
= . % 1 > ”nbn-
Sis " X35t L 31 (6)
o X, n={ x,
ij i
X5 T &L T Ey (6a) ‘
|
The coefficient u is a parameter of smallness. The coefficients
b_ will be addressed later in the paper. Note that the leading cor-

(6) has the effect of altering the magnitude

but not the form of =he Coulomb interaction.

2

Cy(1,2)
Fi(3)

-

N
(7

“an

-4




One also writes

C,(1,2) = Fy(1) F1(2) h(1,2) (8)

where h(l,2) is the so-called 'total correlation function'Zl.

In the weak-coupling (or, 'correlationless) domain, one assumes

F,F

1Fp > C

5 >> C3 ... (9a)

By extension, in the strong-coupling domain we write

FF

<< C

5 << Cq .n. (9b)

These sequential inequalities may both be incorvorated into the

single set of expansions,

Fl = YO[FI(°)+3F1(1)+ ceel
Cy = v[e$® + e cfP + 1] (10)
cy = y2[c§°) +e cgl) + ...

The c-factors follow standard perturbation procedure and permit an
iterative technique of solution. In (10) we have reintroduced the

plasma parameter,

. 3
1 0
v = ——3—3 = — ¥ (1)
Awnkd (Ad) °

which in this instance serves as a bookkeeping index. With v << 1,

(10) is seen to return the weak-coupling sequence (9a), whereas with
v > 1, (10) yields the strong-coupling sequence (9b). Thus the expansion
(10) serves as a unified description of plasma conditions. The Debve

distance \d and plasma frequency 5 which enter (ll) are given dy

\ 2 _ 1 kBT 2 A7ne222
d 47(e2)2 n P o
2 2 2
d “p =C




With (1l1) we see that in the strong-coupling domain n"]'/3 >> Ay

’
so that in this limit the Debye distance ceases to represent the
range of the two-particle interactionm.
It is convenient to introduce the narameter
R R A B (12)
Yo Ad Yo
Consequently the parameter ao/yo that multiplies the interaction
integral in (1) may be rewritten as nz
Another important plasma parameter found in the literature
is

-z (Ze)z/kB’I’a

%; n a3 =1

It is related to y by

Using (12) we rewrite (1) in the more concise form

A N 2
= _ 1 B ~
(Ks + aoBS)FS vy Isrs+l (13)

Definition of the operators Ks , BS and IS follows by compariscn
with (1). Furthermore we set
B, = - u'B ()

n=o0 s

A A (14
I = : 401 @ ‘
5  n=o
in keeping with expansion (6).

In the context of this formalism it is possible to summari:ce

the various possible limiting domains in the Zorm of an LR

diagraml7 as shown in Fig. 3.




B. The Strongly Coupled Domain

In this limit we take g ~ 1, and the relation y = 1,0 gives

n = v, Thus BYl and BY2 become, in accord with expansion (7),

RK,Fy = - %% I,[F, (1)F;(2) + Cy] (15a)

(R, + a,B) [F](1)F(2) + C,] =

- Zii [F,(L)F, (DF,(3) + =  Fi(1)Co(i,k)
T “2°1 1 1 P(ijk) 1 2N
+ C3(1,2,3)] (15b)

Here the svmbol P(i,j,k) denotes summation over permutations of ijk.

OQur chief aim at this point is o cobtain a closed kinetic
equation for Cz(o)(l,Z . To this end a study was made of the
z-dependence of the parameters v and u, with o 1. It was found

2, -1/2 2

that v~ ™~ and uy“ ~ 1 are the simplest forms which give closure.

(See Appendix A.) Applying the expansions (10) and (l4) to

(15) with these :=-dependencies of Aos and . gives the following
leading perturbative equations relevant to determining C,(O).
(3 = (o)~ (0)
" G 0 (15a)
2 .
‘ 0) = .
- £ 1,9F wF @ =0 (16B)
2 (e3¢ (oL v2 2 (D) - (o)
(Ry + 2535 70Cy " =mre Tt o Fy ()€ T (LK) (L7
P(ijik)
Jdere we have written Fl fer F,(O). we note in passing that {17)
is a closed space-time kinetic equation Zor Cq<°)(l,2). Con-

straints (15a,b) are consistent with an assumption of spatial

homogeneity, so that we may write




¢, (1,3) = Fy e (pn D xy )

7.1

(18)

The right-hand side of (17) is simplified by virtue of (16a)

and the vanishing of any space integral over an isotropic vector

field. Consequently two terms survive given by

2.2

RHS(17) = = —pm

-
b

. 3 .1 (1,0
LFl(Z) ?;E—l- Fl(l) "Il +Fl(1)

2

g

ol
4

[Go to p. 8]

- 1,0) -




where

N
~N
o
B
~7
m

: fd3 615 ™0™ (x, ) (19a)

2. (n,m)
bn 52

m

fd3 Gy3 ™M u™ (x, 4) (19b)

With reference to the results of Appendix B, we may write

(dropping the superscript on h)
(llo) = '2 X
S5 x /o de 5%h(p) (20a)

T At (20b)

- 4

15

dere and henceforth we set x = Xyy-

Wich (17) and (19) in (l16) we obtain

Ry + 358, )F (2 F; ()h )

(2L)
2.2( 3 3 - ~o-2 [ X 2
= b7y {33— - 35—] Fi(ppFi(py) = x x J/. do o"h(p)
£l £2 0
In the space-dependent part of ﬁz we use the transformation
Xt x 2t X -x =X
in which case
> ~ 3 1, N
Koh(x) = X« (py - pp) 7% (X (22)

where we have neglected the time derivative in X,. With the repulsive

bare Coulomb interaction, it follows frem (6) and (14) that
N . 9 - .
Bq(o) =x « X ° (ri— - = (23)

Employing the preceding two expressions in (21) gives




9

. 3 c=2 3
X+ (pp - PPIFF 53 B(X) + ax » x ["ﬁ - “—ang F1ppF(py)
x

x
x'zf do ozh(a)
o

(24)
Assuming finally that Fy is isotropic in momentum space, we may

SRS Y PR

write

3 _ 53
B F1® =2 P (25)

and (24) becomes

3 |

- 3 -2 X 2
- P A~ A p o] e
bl Y 51 —2—3p1 Fl(pl)x L do n( )] (26)

-2 Fl(pl)
P2

F.(py) X
2.2 F1\P1) -2 2
-by %y 5 5, Fi(py)x J: de ¢ h(a)]

Operating on this equation with/dgz eliminates the RHS, and since

~

]
L

F,(p,y)

X -+ py 1s generally nonvanishing, there remains

-~

Fl(pl) §§h(x) + :w h(x) =~ pl 3p1 l(Pl)
2.2 1 3 -2 (% 2, .
- by"Y" &=~ <= TF.(py) X f > a2 =0 (27N
1 P1 P & 1 o

Integration over 151 gives

X
L 00 - e %h(x) + bl °Y2x‘2f dz %a(s) =0 (23)
C

where




hé e — —— |
10
2 _ 1 5
v* = - fap, py ¥p7 F1lPD) (29)
and may be assumed positive.
Differentiating (28) with respect to x gives
ZaoYz 2 -9
h"(x) + 3 h(x) - a2 Y% “h'(x)
< o
#5552 [ hew) - 2 a0 otn =0
1Y X =5 o o°h(p) (30)
x o)
Using (28) to solve for the integral term in (30) yields the
differential equation
h' + [zy‘* - <y‘2] h' +ha =0 (31)
where
v = kx k = b ¥y < = a Yk (31a)
Employing the transformation 23
h(y) = 5 e Muy) (32)
s = x/2
in (31) gives
2
(33)

u' + (1 - SPu =0
y

This equation is Schroedinger-like in form and we may conclude

24

. - 2 . : - 2 . .
that for v~ > g, h(y) is oscillatorvy, whereas for y~ < -, h(y) is

exponential, The explicit form of the solutions in these domains mav

e obtained in two extremes:

2
vT o o>> g

e —————
ANe are lefr wich
Q' '+ u =0
which has the solution

u =4 cos v+ 3sinv




e ——— - - 11
With (32) we obtain
-« /2y

h>(y) = E—;——— [A sin y + B cos y] (35)
xz << C
In this case (33) reduces to
u' - 3; u=20 (36)

which has the solution24

uly) = y(@& /Y + 8 e-c/y)
With (32), this gives

h(y) = 5 e™%/Y (37)
where we have set A = 0 because (31) does not allow a constant
solution. As previously noted, the oscillatory behavior (35) of
h(y) in the domain y2 >> ¢, 1s in very good agreement with
7,8

previous numerical studies

We now estimate the value of the leading

coefficient b1 in (6). This is accomplished through comparison of

the wave number K (defined below) of h>(y) with the numerical value

7,8

kWC obtained in Monte Carlo studies . These results imply that in
Iy

the vicinity of v = 50 (i.e., T = 10)

o
4

= E/kdyl/3 ; ad = 3/4rn

kye =

(€3
|}

3 =1.5 :° = 8.4
The wavenumber K is given by
v = Kx

(38)
b

k 1
K =2 = =
A rO r

From (11), g = ro/v. Furthermore, assuming a Maxwellian fowrm for

Y




Fl<pl) gives Y = 1. With these values

K = b]_/xd

and comparison with kMC yields

by = & M3 a g 370-17;-1/2

which with the values cited above gives b; = 0.8. With this result
at hand, we may estimate the value of interparticle separation at
which oscillation of h(x) ensues. Such oscillarion was found

rom (33) to occur for

y2 > x/2

or, equivalently

2

:

X
To
Inserting our previous finding

/
(203, ,2/3

blY = 5 { ’
gives

%> ro/Yl/B

Thus oscillation of h(X) may be expected for interparticle
displacement greater thanor equal to the range of the two-particle
interaction. The initiation of such oscillation may be interpreted
as the onset of phase transition in the plasma7’32. Furthermore
the wavenumber K of these oscillations (38), is seen to grow with

¥. This behavior may be associated with the fluid-solid phase
33 7,34

transition

at large v, found in numerical studies.
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C. The Weak-Coupling Case

1-9 and

This situation has been studied by many individuals
as we nave noted previously it gives the linearized Debye-Hiickle
result. In the kinetic domain this limit yields the Vlasov equa-
tion, or more generally, the Balescu-Lenard Equation.26-33
An essential element of these studies is that the correlation

functions are assumed to be perturbativelv small. Accordingly we

set ¥ ~ ¢ in (10). 1Insofar as T, = Xd in this limit, it follows
that 32 = x/y = 1, which fixes z ~ z. Ve note that this limit is
equivalent to the classical Rosenbluth-Rostoker ansatz.31 With
these constraints and u ~ z, (6) gives the following leading
equations for Cz(o) as derived from (13)

KlFl(0) - ZT%' (0)F (0)F (o) (39a)

(39b)

R,p, Py = Zé (91¢, 0@ 1,2)+7, ) (1yr, D (2347, D (1), € (2) ]

(39¢)

- A2 O)[— - Fl(o)(i)c7(°)(jk)+ - F(O)( )F (O)(J F(l)(k)‘
1 P(ijk) - P(ijk)

o

f\l

We must solve (39) and (40) simultaneously for C (O)\L,z).

First note that (39a) may be rewritten in two equivalent ways:

( )( )f (O)<1)~ (0)(1)r (O)(3>

ﬂl\)

r, Pk w0 - -

[

3

Fl(l)<l)ﬁl(2)pl(0)(2) = e e T (l)(l)I (0) F (O)< )F (O)(3)

J_\
4

- e e . TS

(0) /s .2 (0)p (0) (o) -
1 (2)1 + *Bz Fl (l)F1 (2)
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Similarly (39b) gives
. . - 2 .
P @R P - - 2 @@, ay -

Fl(o) (1) Fl(l) (3) + Fl(l) (l)F]_(O) (3)]

- . 2 3
ROk @Y - - R P00,y +

41

r,@@rPa 5, Per @]

Adding these four equations and subtracting the result from (39c¢c)
yields

2

8y, (2 (1,2y48, @5 5, (O w207 @ 2R O, P -

@19 we, @ a,n-5 i @c, e n:

Four terms remain on the RHS of this equation. Of these, two vanish

by integration of the isotropic vector field gij’ leaving

~

8,0, (1,2) + 18,5, (g (@ .

b (40)
2 . R
- = 3, QWr @ we, @, + L@@ @c,q,:

Here we have obtained (as in the stronglv-coupled analvsis) a
closed space-time-dependent equation of mocion for Cﬁ(o). The

RHS of this equation simplifies to

RHS(40) = - 7= iF, (O (D) 3§I 7, (9 (1.9, 00 -

(41)

5, (9 (2).3,(00)




where the J integrals are defined in (19), and again we find that

N X
Jl(O,O) = 4% x'ZJ[ do ozh(c) (42a)
- - o]

(0,0) (0,0)
Jq =-J (42b)

-~

[(Go to p. 14]
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Substituting (18) and (42) into (40) we obtain

A~

” (o) -
K,FFih(x) + aB,  'F;Fy

2[5 5 ~ -2 X2
| 5 %-]F]_Fl X X -/;do,h(p)

Making use of (22) and (23) in the LHS of (43) gives

< - - L I =

(43)

a2 s 2 ) EmE - g2 [ Tde 5200e)
3Py 8P| L1 = o

Furthermore, with (25) the preceding equation becomes

~ p— 3 —
X . P [Fﬁl Pt 7 Ty 1P

F,(py) -2
+n2-]‘ 2 = Fi(ppx f

X 2 ]
P 757 . de ¢“h(0)

A F.(py) .

- . i b3 l l S =
=% B [FlFl x o7 <2 Py 3D, F1(pp)

F,(py) X

2 P11 ,-2/’ 2.
+ 7 5, 35, Fo(py)x . de ¢ h(.u)]
Repeating the procedurs leading to (27), we £ind that (45)

yields

9|

3 1 Jo

. . _a X 5
;’;h-—ffYZ-ﬁzsz‘f do %h(z) = 0
’ x” o

Differentiating («7) leads to

(44)

(45)

S F(p) 0 = 2= F ppx? | Tde ot
-l pl i pl Ep lpl - v e ~




]

1 , - X
| O L i j[ do o%h(p) - n’Y?h = 0 (48)
.4 [o]

Combining the last two equations gives

B + 22 _p = (49)

. where
y = n¥x (49a)

The general solution to (48) may be written

y v
- e e’
h(y) = Dy 5 + D, ¥ (50)

We need to affirm that (49) is a solution to the parent integral

equation (47), which in terms of y is

: d 1 v
Fh-—7 [aY3n + { dy yzh(y)] = 0 (51)
- (o]
Inserting (49) into (50) leads to the constraint
R .

Setting D, = 0 for physical reasons leaves the solution

h(y) = - - (53)

For a Maxwellian, Y = 1. Furthermore, in the present limit we

recall that n = 1, so that vy = %, and (52) mayv be written

e e
h(x) = - % 54)
X
This is the well-known linearized Debye-Hickle resu1:35, which
follows to Zirst-order in a from an expansion of the zore precise

nonlinear Debve-Hiickle form

(9]
(V1)
~

h(x) = e-9d(x) _ (

where




16

e X -
bd(x) ES Q—x— (Sba)

Whereas the Debye-Huckle form (54) agrees with the linearized result
(53) for x >> 1, we see that at the origin h(x) diverges, but hd has

the correct value hd(o) = - 1.

I1I1. Conclusions

We have described a unified formulation of correlations in a
one-component plasma, based on the plasma parameter ¥, which is wvalid
in both the weakly and strongly-coupled domains. The theory is
based on the BBKGY hierarchy together with expansions of the two-
particle interaction and correlation functions. .

In the weak-coupling domain, the analysis returns the familiar
linearized Debye-Huickle correlation function. In the strong-coupling
domain a second-order differential equation for the total correlation
function is found which yields an exponentially damped solution near
the origin. For particle separation on the order of the range of the
two-particle interaction, the equation gives a Bessel-like oscillatory
solution. These features of the correlation function are in excel-
lent agreement with previous numerical studies.

In both domains, closed space-time dependent integro-
differential equations were obtained for the two-particle correla-
tion functions. We anticipate that future studv will Siand impor-
tant applications of these results doth in plasma and ccndensed

matter physics.

T T -




r""""""""'""' | 17

Appendix A
Here we examine the decoupling ccndition on -+ employed in

: Section B. With expansions (6) and (10) in BY, (15b), we write

B 2 eae) ||, ® ()]
'Ky + 3 T u'B IF,.F, + v - =°¢C !
LZ 0 £=0 2 _!Ll 1 =0 2 _|
(Al)
2 [ = - o )
- v rr“(r)’r- = = -~ mn () . .2 . m (m;]
= - ,—': ) - - 12 Fl;1r1 - b Cf’ U H e (4 C3 ‘
4T =0 R n=0 - m=0 |

The 7, functions are expanded as in (10). We seek a kinetic

c®

equation for consistent with a0==0(l). In general, such an

A
-

equation includes ﬁ, 3 and I terms. The mere requirement of a g
term indicates that the equation sought must be 0(y), which leads
to the condition

Y=oy = ouy (A2)

The leftmost equality gives t =0, with u#1. This specifies inclu-

sion of the~B§0) term in our equation. The rightmost equality gives

The simplest choice which includes effects of the background is

18

=1 which specifies inclusion of the zerm and

Finallv, decoupling the Iél) éO) term Ifrom all other C(n) terms
tin the RHS of (Al)] requires that
vy # L9.7 a0, 3 Z (A%)
7 a
weo# =35 550 ay D (15)
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These relations give, respectively,
w3710 4 3320, ns3l (46)

Yus’lsm # 1 s *0, m=z20 (A7)
Using (A3) in (A6) yields

Y # c1/2(q-1) qQ30, n>1 (A8)

The strong-coupling condition (v >

v
—
~-
L
o

e
[
e
"t
o
n

eM/20a-1) oy , 930, nzx1 (A%)

This allows as the only possibility, q=0. Therefore, (A8)

requires

- 2
v o# eTR/2 (A10)

Similarly, witch (A3) in (A7) it follows that

cm/2s-3 , s >0, m30 (Al1)

-~

This leads to the cases s=0,1 and thus
vt T3 1 s (A12)

Combining results (AlQ) and (Al2), the final conditions on - ar

(/]

summarized by

= ."a/d

1218
(W=

(Al

wnere @ 3 9.




19

Any one of these allowable orders of ¥ leads to the soughr-afrcer

decoupled equation for C§0) in the strong-coupling limit. In

this
analysis we select the simplest case: a=1, b=4, corresponding
to
y2 = "1/2 (Ald)

[Go to p. 20]




Aopendix B
Consider the integral (
2= X3 7% " %3

+

t

= 9
X137 ¢

in which case forn =1, m =

(1,0) _ 3
21 X J[d

In spherical coordinate

2

(e}

d

[ o]

L0

+ X = Xp CO0s 2

h(c
o+

20

19a). We set

(B1)

0, we find

)
X (B2)

-~

s with

" sin 0 do d¢ do

(B3)

) N
to + x| = (p° + 2x¢0 + xz)a

and x held fixed along the z

obtain

(1,0) _ 3 [T .
Jl - 2“' a—g o d‘,_,v

-~

Performing the 3-integration

(1,0) _ s [T
:'Il - - 27 g:i—[ d~

or, equivalentlw,

-
M

~

(1,0) _
I = -2

Q2
'x Cal
g
d
Q.
k)
o

~axis throughout the integration we

ozh(p) Jf. ¢ sin © (92 + 2xccos 2+ :‘:2)'}5
o
gives
R -
:zh(:) 1 [32 + 2xccosd + x']%
X0 °

X h(o)[(oz - 2x25 + xz)% - (:2 - 2x: + xz)f




—"

Differentiating, one finds

-~

\ ~ X
Jl("o) = - 471 X X 2 j' do azh(p)
b o
in agreement with (20a).
For the integral (19b) we set
2= %13 7 ¥ - %3
T3 727 %

which leads to

5,10 o ifdc (o)

Repeating the preceding calculations gives

(1,0) _ (1,0)
I =-J9

We turn next to the integrals in (41), in which case n =

With (Bl) we £find

(0,0) . 3 )

and with (B5) we obtain

=
~ X

Following the analysis above gives

(0,0) _

J
~ L

,€0.0) .

|
]
(@
—
N
o
<
~

35

(B4)

(B5)

(36)

(B7)

0, m= 0.

(B8)

(3%)




22

Acknowledgements

We are indebted to our colleagues, K. C. Liu, Kenneth Gardner,
and Stephen Ralph for their careful reading of the final manuscript,
and to Z. Zinamon for his knowledgeable comments on this topic.
This research was supported in part by Contract No. AFOSR 78-3574

between Cornell University and the United States Air Force.

Figure Captions

Figure 1
The plasma parameter vy for n and T (with Z = 1) showing
weakly and strongly coupled (shaded) domains.
Figure 2
Flow chart explaining the analysis.
Figure 3
2g= plot showing weakly coupled (WCP) and strongly

coupled (SCP) plasma domains.
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